Главная Статьи Материалы Утеплители под мик...

Утеплители под микроскопом.

GoAndSee.ru
Пробыв в стене долгие годы, ничем не защищенные от влаги, древесные опилки практически не изменились. И сегодня я для нашего нового дома вновь обращаюсь к этому супернадежному, дешевому и абсолютно экологичному утеплителю.... Далее...
Что такое теплоизоляционный материал вообще? Обычно таковым признается такой материал, коэффициент теплопроводности которого составляет не выше 0,18 Вт/(м°C).

Вообще, любое твердое вещество обладает в массе своей гораздо бОльшим коэффициентом и теплоизолятором считаться не может. Другое дело, когда это вещество наполнено огромным количеством мелких воздушных пространств, желательно полностью изолированных друг от друга стенками вещества.

Любой теплоизоляционный материал построен на этом принципе, будь то газобетон, минвата или пенопласты. Кстати, замечено, что коэффициент теплопроводности практически напрямую зависит от удельного веса утеплителя: чем легче материал, тем теплее.

Пористые полимерные материалы Технологии использования пенопластов в жилом строительстве широко распространены. Особенно часто применяются экструдированный и вспененный полистиролы.

Пенопласты представляют из себя дисперсные полимерные системы. Это означает, что в структуре пенопласта взаимно распределены в пространстве собственно полимер и газовая среда, которая вне зависимости от начального состава со временем неизбежно замещается на воздух.
Вот типичная структура пенополистирольного пенопласта. Хорошо видно, что ячейки воздуха разделены тонкими пленками полимерного материала. Очевидно, что в связи с незначительной толщиной пленок, значительная доля материала полимера всегда доступна для газовой фазы.

Но особенно интересно посмотреть, что случается с пенополистиролом даже после незначительного искусственного старения. Для этого материал выдержали в термостате при 60°C всего 10 часов. Хорошо видно, что многие пленки превратились в ажурную сетку-паутину. Естественно, что такое изменение необратимо и не улучшает теплоизоляционные свойства материала. То есть даже при таком незначительном и непродолжительном тепловом воздействии полимерная пена изменила свою структуру, начался процесс разрушения, который со временем будет только усиливаться.

Кроме того, пенопласты не только являются органическими соединениями, но и имеют весьма высокую поверхность контакта поверхности с кислородом воздуха. Если органическое соединение находится на воздухе, то оно будет неизбежно окисляться кислородом. Так как пенопласты имеют максимально возможную поверхность, то и окисляться они будут с максимальной скоростью по сравнению с аналогичными, но монолитными - массивными - полимерами. Поэтому для любого пенопласта неизбежно следует предположить конечное и ограниченное время эксплуатации, когда его эксплуатационные свойства будут еще в допустимых пределах.

На практических примерах пенопластов конкретных производителей показано, что долговечность ограждающих конструкций с использованием пенопластов варьируется от 13 до 43 лет.

Поэтому процесс старения и деструкции полимеров является неизбежным и необратимым вследствие того, что в основе его лежат естественные процессы, в первую очередь окисление. Естественно, что в таком случае продукты такой деструкции должны выделяться в окружающую среду, причем такой «окружающей средой» будут являться жилые помещения.

Гигиене и токсикологии полимерных материалов вообще и пенопластов в частности посвящен ряд монографий. Все авторы обсуждают состав и количество выделяемых продуктов, но сам факт обязательного газовыделения из полимерных материалов вообще не ставится под сомнение.

Одной из основных причин выделения токсичных компонентов из пенополистирола является окислительная деструкция органических соединений на поверхности полимерной пены. Естественно, что в полном соответствии с законами химии скорость окисления с ростом температуры растет не просто быстро, а по экспоненте. Поэтому всегда при определенной температуре любое органическое соединение и полимер в том числе начнет окисляться самопроизвольно, а попросту говоря – гореть.

В рекламе пенопластов производители, описывая данное свойство, несколько лукавят, утверждая, что какой-либо пенопласт не горит или самостоятельно затухает. Факт такого поведения пенопласта не говорит о пожарной безопасности данного материала. По классификации на пожарную опасность все пенопласты относятся к классу «Г», то есть горючих материалов.

Исследования Российского научно-исследовательского центра пожарной безопасности ВНИИПО МВД РФ, представленные на сайте www.aab.ru/sertif однозначно говорят о высокой пожарной опасности полимерных материалов. Например, в приведенном отчете об испытаниях на пожарную опасность полистирольного пенопласта указано, что значение показателя токсичности образцов близко к граничному значению класса высокоопасных материалов.

Эти известные в специальной литературе факты периодически находят отражение в конкретных примерах, отраженных в средствах массовой информации. Так, например, в газете «Местное время» г. Пермь (Н. Лерина. Качество безопасности.- №4, 2001, с.7) приводится пример пожара в жилом доме. Автор пишет: «Во время пожара погибла женщина. Парадокс ситуации в том, что возгорание произошло в квартире, расположенной двумя этажами выше. Причиной смерти стал токсичный дым полистирола».

В репортаже, прошедшем по Екатеринбургскому телевидению (Е. Савицкая. М. Попцов. Телекомпания АСВ, Екатеринбург, Пожар в строящемся доме) сказано, что «загорелось теплопокрытие из полистирола… Во время тушения пожара обнаружили трупы двух мужчин. Они лежали на два этажа выше источника огня с признаками удушения от дыма». Авторы утверждают, что «пожарных заинтересовал полистирольный утеплитель, который сгорел в большом количестве и вызвал этот черный удушающий дым».

Если суммировать те проблемы, которые возникают при использовании пенопластов в качестве теплоизоляционных материалов в строительстве, то их можно свести к ограниченному сроку эксплуатации, неопределенности с экологической безопасностью и высокой пожарной опасностью в случае возникновения экстремальной ситуации.
Минераловатные материалыСреди минеральных ват следует выделить материалы на базальтовой (каменная вата) и кварцевой основе (стекловата). Достоинством базальтовой ваты является ее незначительный вес (50–200 кг/м3). Базальтовый утеплитель в основном используется для теплоизоляции жилых и административных зданий.

Основные проблемы по использованию минеральных ват оказались связанными не с их химическим строением или сырьевым происхождением, а со структурой.

Фотография типичной базальтовой ваты. Хорошо видно переплетение многочисленных нитей, причем сами по себе нити выглядят гладкими. Последнее обстоятельство объяснимо, учитывая использование расплава при формировании волокон, то есть их поверхность оплавлена. Это хорошо с точки зрения микропористости – микропор нет у оплавенных материалов, поэтому минеральной вате не страшна капиллярная конденсация и связанная с ней низкая морозостойкость. Но, это обстоятельство имеет и негативную сторону.

Отсутствие шероховатости на поверхности волокон приводит к невысокому коэффициенту трения между волокнами. Проще говоря, ничто не препятствует изменению формы изделия, изготовленного из волокон. А учитывая значительный объем воздуха между волокнами, очевидно, что изменять форму всему изделию достаточно просто.

Материал необходимо тщательно закреплять на конструкции, но всегда существует ряд воздействий, смещающих волокна друг относительно друга. Это может быть и вибрация от проезжающего транспорта, и конвективные потоки в вентилируемых фасадах, и даже неизбежное сезонное термическое расширение и сжатие волокон. На практике это приводит к проседанию материала и появлению участков, свободных от теплоизоляции. Поэтому волокнистые минеральные материалы нельзя считать долговечной теплоизоляцией.

При рассмотренной структуре волокнистого материала возникает понятное желание закрепить, связать волокна между собой в местах их соприкосновения для получения пространственно жесткого материала, который был бы не подвержен усадке со временем. И такое техническое решение было найдено и было успешно использовано на практике практически немедленно после получения первых волокнистых минеральных материалов.

Действительно, добавление связки позволяет закрепить волокна в местах их пересечения и материал получается достаточно жестким. Это фотография жесткой минераловатной плиты. Те бесформенные «лепешки», в которых закреплены игольчатые волокна – это и есть та полимерная добавка, которая призвана придать жесткость минераловатному изделию. Хорошо видно, что полимер закрепил, хотя бы частично, волокна и препятствует их взаимному смещению. То есть в принципе жесткость достигнута.

По такой схеме создаются все жесткие и полужесткие минераловатные изделия. Но беда состоит в том, что в качестве связки используют опять же полимерные материалы, причем характер их распределения в минераловатном изделии предполагает опять же высокую удельную поверхность этого полимера. А что такое полимер с высокой удельной поверхностью уже сказано выше.

Это опять недолговечность, выделения в воздух и проблемы при пожарах, тем более, что количество вводимого полимера может достигать значительных величин. При этом необходимо заметить, что характер распределения полимера внутри изделия весьма далек от равномерного, что создает дополнительные
проблемы и требует увеличения количества полимера для достижения приемлемой жесткости.

Кроме того, минераловатные материалы не имеют в своем составе закрытой пористой структуры, проще говоря, воздух имеет возможность перемещаться по всей толще. Совершенно понятно, что при таком факте их эффективность, как теплоизоляторов, не столь высока, как декларируется производителями.

В научно-технической литературе прогнозируемый срок эксплуатации для различных минераловатных плит не превышает тридцати лет.

Что касается экологических проблем, не связанных с полимерной связкой, а касающихся собственно минеральных волокон, то в настоящее время идет дискуссия относительно влияния волокон, особенно супертонких.

По материалам сайта http://www.penosytal.ru

GoAndSee.ru
Структура у пенобетона лишь немногим отличается от газобетона. Та же пена, только у газобетона она более равномерная. Но газобетон впитывает воду, а пенобетон - нет. Вот и думаем, какой материал нам нужен.... Далее...
Информация о новых статьях здесь


167
Размещено: 23.12.07
Просмотров всего: 22497
сегодня: 19


Назад к списку статей Комментариев: 1

Комментарии.


gravatar
BiznesmanVasiliy 28.11.11
Присоединяюсь )



 Главная
 Статьи [214]
 Справочник [21]
 Вопросы-ответы [266]
 Книги [8]
 Связь

 Форум
 RSS новости сайта
 Ретроспектива изменений


© 2006 - 2018 Строительный портал "Самострой"
Портал для тех, кто строит сам
Дизайн сайтов, порталов, сервисов